

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Heliotrope

Code: [image: _images/heliotrope.svg]Build Status [https://travis-ci.org/mlibrary/heliotrope]
[image: _images/badge.svg]Coverage Status [https://coveralls.io/github/mlibrary/heliotrope?branch=master]

Thanks to Skylight [https://www.skylight.io/support/skylight-for-open-source]: [image: _images/TtaAmIlZOoFS.svg]View performance data on Skylight [https://oss.skylight.io/app/applications/TtaAmIlZOoFS]

Jump In: Issue Tracker [https://tools.lib.umich.edu/jira/projects/HELIO/issues]

Table of Contents

	What is Fulcrum? What is Heliotrope?

	Feature List

	Help/Contact

	Getting started

	Prerequisites

	Initial setup

	Debugging

	Testing

	License

	Contributing

	Ancillary Repositories

	Acknowledgements

What is Fulcrum? What is Heliotrope?

Fulcrum [https://www.fulcrum.org] is an in-development publishing platform and set of hosting and publishing services aimed to help scholarly publishers present the full richness of their authors’ research outputs in a durable, discoverable, and flexible form. Its first phase of development is focused on providing branded companion websites for books. Now, in its second phase, it will expand to host complete e-book collections, journals, and new forms of multimodal publications as well as provide a set of hosting and publishing services for publishers.

Heliotrope is the codebase behind the Fulcrum publishing platform. It is a Rails application that extends Hyrax [https://github.com/samvera/hyrax]–the popular front-end repository solution from the Samvera open source community [https://samvera.org/]–to provide solutions for scholarly publishers.

It is built by the University of Michigan Library [https://www.lib.umich.edu] and managed by the Library’s publishing division, Michigan Publishing [https://www.publishing.umich.edu].

Feature List

In addition to the features that come with Hyrax [https://github.com/samvera/hyrax/wiki/Feature-matrix], Heliotrope offers the following:

	Web-based e-book reader for FileSets [http://pcdm.org/works#FileSet] that are valid EPUBs. The e-book reader is delivered as a single-page JS application that is included with Heliotrope as a gem. See the wiki for more details and features [https://github.com/mlibrary/heliotrope/wiki/EPUB-Reader] specific to the e-book reader. (Example [https://hdl.handle.net/2027/fulcrum.t722h883s])

	Publisher catalog page listing Works [http://pcdm.org/works#Work] associated with publisher (Example [https://www.fulcrum.org/michigan]).

	Customized branding (logo, colors, fonts) for publisher that is applied to associated Works and FileSets (Example [https://www.fulcrum.org/concern/monographs/w0892995q]).

	Publisher-specific usage analytics (eg, support for multiple Google Analytics IDs on a single page, allowing each publisher to have their own Google Analytics property).

	Bulk importer for Works and their children.

	Embed codes for FileSets, allowing FileSets to be embedded into external websites and EPUB files.

	Support for FileSets that are hosted externally (Example [https://www.fulcrum.org/concern/file_sets/zg64tk984]).

	Additional metadata fields for Books and their associated media.

	Accessibility improvements to meet Section 508 and WCAG 2.0AA guidelines [https://www.w3.org/TR/WCAG20/].

	Delivery of time-based media through an accessible media player, AblePlayer [https://ableplayer.github.io/ableplayer/]. Support for transcripts and captions when provided (Example [https://www.fulcrum.org/concern/file_sets/jh343s28d]).

	Delivery of IIIF [http://iiif.io/]-served images using Leaflet (Example [https://www.fulcrum.org/concern/file_sets/s7526c42w]).

	Integration with Jekyll [https://jekyllrb.com/] static-site generator for “aboutware” static pages and blog.

Help/Contact

For additional details and helpful hints read our ever growing Wiki [https://github.com/mlibrary/heliotrope/wiki]. To get in touch with us over e-mail, contact the Fulcrum Developers List. To stay updated with developments in Heliotrope and Fulcrum, sign-up for our newsletter [https://www.fulcrum.org/#get-updates].

Getting started

Prerequisites

	Install and configure Hyrax prerequisites [https://github.com/samvera/hyrax#prerequisites].

	Install redis [https://github.com/mlibrary/heliotrope/wiki/Background-Jobs#how-to-install-redis]

	Install mysql (Install MySQL OS X El Capitan [https://github.com/mlibrary/heliotrope/wiki/Install-MySQL-on-OS-X-El-Capitan])

Initial setup

1. Getting a local copy, bundle install gems, and execute setup script

$ git clone https://github.com/mlibrary/heliotrope.git
$ cd heliotrope
$ bundle install
$ yarn install
$ bundle exec ./bin/setup
$ bundle exec rails checkpoint:migrate
$ bundle exec rake assets:precompile

See the Wiki [https://github.com/mlibrary/heliotrope/wiki/Static-Pages-and-Blog] for information on Jekyll [https://jekyllrb.com/] integration.

2. Create users

Create fulcrum-system user

There is a rails task you execute to create a “fulcrum-system” user.

$ bundle exec rails system_user

If you need to run this when the app has been deployed, execute:

$ RAILS_ENV=production bundle exec rails system_user

Make yourself a “platform” admin

There is a rails task you can execute to create a “platform” admin user. It will prompt you for an email address and then create a user with the correct role.

$ bundle exec rails admin

If you need to run this when the app has been deployed, execute:

$ RAILS_ENV=production bundle exec rails admin

3. Run the application

Execute this command to start Fedora, Solr and Rails servers:

$ bundle exec rails hydra:server

Or, if you prefer to start each server individually execute each of the following commands in a seperate shells: (you must use this alternate option if running on a VM)

$ redis-server /usr/local/etc/redis.conf
$ fcrepo_wrapper -p 8984 --no-jms
$ solr_wrapper -p 8983 -d solr/config/ --collection_name hydra-development
$ bundle exec rails s

NOTE: You’ll also want to make sure that you have MySQL started.

NOTE: There are also config files available for running the wrappers (which save you from having to remember ports, collection names etc). Their settings attempt to persist your Solr index as you move between dev and test. Use like so:

$ fcrepo_wrapper --config .wrap_conf/fcrepo_dev
$ solr_wrapper --config .wrap_conf/solr_dev

4. Create default administrative set [https://github.com/samvera/hyrax#create-default-administrative-set]

$ bundle exec rails hyrax:default_admin_set:create

Debugging

Explain Partials

When running Rails server, set the EXPLAIN_PARTIALS environment variable to show partials being rendered in source html of your views. You can view this info using your browser’s inspect element mode.

$ EXPLAIN_PARTIALS=true bundle exec rails s

NOTE: Because this feature can add a fair bit of overhead, it is restricted
to only run in development mode.

Testing

To execute the continuous integration task run by Travis CI

$ bundle exec rails ci

Starting servers individually when testing

Alternatively, you can start up each server individually. This may be preferable because the ci task starts up and tears down Fedora and Solr before/after the test suite is run.

1. Start up FCrepo

$ fcrepo_wrapper -p 8986 --no-jms

or

$ fcrepo_wrapper --config .wrap_conf/fcrepo_test

2. Start up Solr

$ solr_wrapper -p 8985 -d solr/config/ --collection_name hydra-test

or

$ solr_wrapper --config .wrap_conf/solr_test

3. Run tests

$ bundle exec rails rubocop
$ bundle exec rails ruumba
$ bundle exec rails lib_spec
$ bundle exec rspec

System specs

System specs are skipped on Travis due to frequent timing failures. This won’t affect running rspec locally either directly or through the ci task.

Running specs individually

To run individual specs located in the ./lib/spec directory (a.k.a lib_spec) first step into the lib directory and then execute rspec.

$ cd lib
$ bundle exec rspec

Special note on running tests

As of June 20, 2017 there are tests that require the static pages to be built in order for routing to happen correctly (See Static Pages and Blog [https://github.com/mlibrary/heliotrope/wiki/Static-Pages-and-Blog] documentation). This means you need to execute

$ bundle exec rails jekyll:deploy

before running rspec. This only need be executed once. If you followed step 1 of the initial setup then you did this already.

License

Heliotrope is available under the Apache 2.0 license.

Contributing

We’d love to accept your contributions and there are lots of ways to engage with the Fulcrum project and Heliotrope codebase even if you aren’t a developer. Please see our contributing guidelines [https://github.com/mlibrary/heliotrope/wiki/How-to-Contribute] for how you can get involved.

Please note: As of May 14 2018, we have migrated our issues to a JIRA project [https://tools.lib.umich.edu/jira/projects/HELIO/issues] and are no longer creating new issues in GitHub. All GitHub issues that were open at the time of migration will be updated with relevant links to the corresponding JIRA issue. If you find bugs or would like to open an issue, you can still use GitHub for that to open the conversation with Fulcrum developers.

Ancillary Repositories

The Fulcrum Development Team have created a number of ancillary code repositories for handling different areas of business logic related to our use of the Heliotrope repository software. None of the libraries listed below are required in any way for the operation of Heliotrope and are tuned to the use cases and business logic relevant to the Fulcrum instance. They are offered here for possible adaptation and repurposing, or just to illustrate the cluster of tasks that necessarily arise around the operation of repository publishing software.

	Heliotropium [https://github.com/mlibrary/heliotropium] is a collection of miscellaneous scripts that provide support and infrastructure for heliotrope in the Fulcrum production environment but don’t require direct access to Hyrax data structures. Examples include task scheduling and fetching MARC records.

	Winterberry [https://github.com/mlibrary/winterberry] provides a number of scripts for processing content in a production stream for eventual ingest into Heliotrope.

	Greensub [https://github.com/mlibrary/greensub] supports a number of business processes related to restricted repository content: assigning Monographs to specific restricted Products, and authorizing Institutions and Individuals to access those Products.

	Turnsole [https://github.com/mlibrary/turnsole] provides the RESTful API for Greensub to communicate with Heliotrope.

Acknowledgements

Initial development has been supported by a generous grant from the Andrew W. Mellon Foundation [https://mellon.org/] and implemented by the University of Michigan Library and Press working with partners from Indiana, Minnesota, Northwestern, and Penn State universities and Data Curation Experts [https://curationexperts.com/].

Testing

Configuration

./testing/testing.yml

testing:
 source_url: 'https://www.fulcrum.org/'
 source_token: ''
 target_url: 'https://heliotrope-testing.hydra.lib.umich.edu/'
 target_token: ''

Rake Task

To run testing specs

./bin/bundle exec ./bin/rails testing_spec

To run individual specs located in the ./testing/spec directory (a.k.a. testing_spec) first step into the testing drectory and then execute rspec.

$ cd testing
$../bin/bundle exec rspec

Leaflet.Pancontrol [http://kartena.github.com/Leaflet.Pancontrol/]

A panning control for Leaflet [https://github.com/CloudMade/Leaflet].

Tested with Chrome, IE 7-9 and Firefox.

Also see Leaflet.Zoomslider [https://github.com/kartena/Leaflet.zoomslider]

Branches

	0.4 — tracks Leaflet 0.4.x and should be stable.

	master — tracks Leaflet master and can be considered unstable (but please file bugs!).

TODO

	Styling

	Prevent double-clicking prevent from zooming map

	Make panning offset configurable

	Do something about the hardcoded support for the zoom- and zoomslider controls.

	Make special CSS’s for IE.

 Since there is no ‘official’ convention for naming Leaflet plugins I’d like to start a convention of storing the unzipped downloaded release folder under ‘vendor’ and copying the necessary files to their appropriate locations under ‘vendor/assets’. This way the next developer will know what version of the plugin is being used as well as what files belong to which plugin.

Leaflet.Control.FullScreen

What ?

Simple plugin for Leaflet that adds fullscreen button to your maps.

Inspired by http://elidupuis.github.com/leaflet.zoomfs/

Use the native javascript fullscreen API http://johndyer.name/native-fullscreen-javascript-api-plus-jquery-plugin/

Released under the MIT License http://opensource.org/licenses/mit-license.php

How ?

Include Control.FullScreen.js and Control.FullScreen.css in your page:

 <link rel="stylesheet" href="Control.FullScreen.css" />
 <script src="Control.FullScreen.js"></script>

Add the fullscreen control to the map:

var map = new L.Map('map', {
 fullscreenControl: true,
 fullscreenControlOptions: {
 position: 'topleft'
 }
});

If your map have a zoomControl the fullscreen button will be added at the bottom of this one.

If your map doesn’t have a zoomContron the fullscreen button will be added to topleft corner of the map (same as the zoomcontrol).

If you want to use the plugin on a map embedded in an iframe, don’t forget to set allowfullscreen attribute on your iframe.

Events and options:

// create a fullscreen button and add it to the map
L.control.fullscreen({
 position: 'topleft', // change the position of the button can be topleft, topright, bottomright or bottomleft, defaut topleft
 title: 'Show me the fullscreen !', // change the title of the button, default Full Screen
 titleCancel: 'Exit fullscreen mode', // change the title of the button when fullscreen is on, default Exit Full Screen
 content: null, // change the content of the button, can be HTML, default null
 forceSeparateButton: true, // force seperate button to detach from zoom buttons, default false
 forcePseudoFullscreen: true, // force use of pseudo full screen even if full screen API is available, default false
 fullscreenElement: false // Dom element to render in full screen, false by default, fallback to map._container
}).addTo(map);

// events are fired when entering or exiting fullscreen.
map.on('enterFullscreen', function(){
 console.log('entered fullscreen');
});

map.on('exitFullscreen', function(){
 console.log('exited fullscreen');
});

// you can also toggle fullscreen from map object
map.toggleFullScreen();

Where ?

Source code : https://github.com/brunob/leaflet.fullscreen

Downloads : https://github.com/brunob/leaflet.fullscreen/releases

Demo : http://brunob.github.com/leaflet.fullscreen/

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

